
Cross-Platform Development:
Target More Platforms and Devices with a
Minimal Amount of Source Code

What is cross-platform
development?
 Cross-platform development produces a

single code base that can be run across
multiple operating systems such as
Microsoft Windows plus Mac/Apple and/or
Android.

Cross-platform applications can reach your customers through
whatever device they have in front of them, wherever they
are: using a Windows* PC at work, an Apple* iPad* at the
local coffee shop or an Android* phone on the go.

Advantages
 Consolidated Development Effort – Using a

single API /code base saves time on development,
localization and maintenance of the code base.

 Decreased Development Time – Cross-Platform
tools (CPTs) not only provide one tool for multiple OSs,
they can also simplify development with dynamic and
comprehensive libraries.

 Code and Asset Sharing – Most of the major
frameworks have official repositories for sharing code
and assets or purchasing them from other
developers/vendors.

 Fewer Skill Sets – The required technical skills sets
can be focused around a single API to implement and
support the project.

Disadvantages
 SDK Lock In – Once you commit to a framework,

you are dependent on the tool set and the availability of
development resources who support it.

 Outdated API Risk – Cross-platform SDKs may lag
behind the latest and greatest features offered by native
SDKs possibly making applications appear less up-to-
date and current.

 Testing – Testing cross-platform apps may be more
complicated since different platforms can exhibit slightly
different behavior and subtle bugs.

 Limited Feature Set – Cross-platform SDKs are an
abstraction of the various platforms into one uniform
interface; this abstraction may limit the feature set
compared to the native API.

CPT Challenge: Dynamically
Adapting to Screen Parameters

 Truly cross-platform means that the
application provides a good user experience across a
variety of screen sizes, resolutions, aspect ratios and
orientations.

 Scaling – Scaling components and fonts according to the screen
dimensions is the simplest approach and optionally, adjust padding
around UIT components to accommodate various aspect rations.

 Responsive Images and Layout – Images may be
cropped or optimized for different resolutions, also consider a fluid
layout; rearrange sections based on available screen real estate.

 Managing “Idiosyncrasies” – For example, all OSs
have differences in the behavior of platform runtimes that complicate
cross-platform development.

Top 5 Cross-Platform Tools*
 Qt
 Adobe AIR
 Appcelerator
 Apache Cordova
 Sencha

* Developer Economics 2013 Q1 Report

Qt (“Cute”)
 Qt targets a number of embedded,

desktop and mobile platforms.
Developers write using “QML”, a CSS
and JavaScript like language. Apps
are backed by an extensive set of
C++ libraries and utilize graphics/UI
components written in C++.

Qt (“Cute”)
 Pros

 Provides a substantial set of libraries containing intuitive APIs for
features like threading, networking, animations and more.

 Qt’s IDE tooling (Qt Creator IDE & Qt Designer) are solid
development tools, and code profiling is available in QML Profiler.

 Qt Linguist enables translation and internationalization in
applications – providing the support of multiple languages within
an app (in a single binary).

 Cons
 Qt’s tools are advertised as a “complete tool chain”, and QML is a

proprietary language specific to Qt’s stack. Committing to this
approach could be viewed as ‘platform lock-in’, and may limit the
re-use of existing developer skill sets when adopting a CPT.

 Pricing of the toolset /support may be higher than support cost for
other CPTs.

Adobe Air
 Adobe Air allows developers to

combine HTML, JavaScript, Adobe
Flash® and Flex technologies, and
ActionScript®+ to deploy Rich
Internet Applications (RIAs) on a
broad range of devices including
desktop computers, netbooks,
tablets, smartphones, and TVs.

Adobe Air
 Pros

 Adobe AIR has impressive reach – running on a wide array of
desktop and mobile devices. In addition, if a more
involved/animated UI is required (and a native approach is not
utilized), using AIR over a HTML/JavaScript/CSS approach may
work well.

 Most Flash/ActionScript developers consider the IDE tooling for
these technologies as mature.

 Cons
 The “elephant in the room” for many mobile developers is the fact

that Adobe purchased Nitobi (and the rights to the PhoneGap
name), clearly signaling to many that AIR may not be a long term
strategy for mobile development. This combined with the rapid
decline of Flash erodes the confidence many developers might
otherwise have in choosing AIR.

Appcelerator
 Appcelerator’s Titanium provides a

unified (across devices) JavaScript API,
coupled with native-platform-specific
features. Developers write JavaScript
and utilize a UI abstraction (the Alloy
MVC framework) that results in the use
of native UI components, greatly
aiding UI performance compared to
other hybrid options.

Appcelerator
 Pros

 The use of native UI components is a performance win, and the
Alloy framework attempts to normalize UI across platforms.

 The use of JavaScript to normalize code across platforms enables
you to leverage existing skills on multiple target platforms.

 Appcelerator provides value-adds such as a Backend-as-a-
Service (BaaS), app analytics and a marketplace for 3rd party
components.

 Cons
 Normalizing the UI across platforms, while arguably a “pro”, is also

a “con” in that the SW development team will need to have
experience on a proprietary technology (skills that are not directly
transferrable outside Titanium).

 Developers are required to manage target platform SDKs locally.

Apache Cordova
 Apache Cordova/PhoneGap supports

creation of mobile apps using HTML,
JavaScript and CSS. These assets run in
“WebView” inside a native app container
on the target platform. It is, conceptually
a web app packaged within a native app
container where JavaScript has access to
device-level APIs that normal web apps
would not access.

Apache Cordova
 Pros

 A significant number of developers have experience with HTML,
JavaScript and CSS. Apache Cordova allows developers to
immediately leverage these existing skills.

 Cordova apps install like a native application, and are able to
leverage app store discoverability. Cordova follows a plugin
architecture, which means that access to native device APIs can be
extended in a modular way.

 Cordova is open source and free, so there are no licensing costs.

 Cons
 The performance of Cordova apps has often been criticized.
 Cordova is “bare bones” and maybe incomplete. The open source/

plugin architecture works well if the plugins needed are
available or if your web developers are capable writing their own
custom plugin(s) as needed.

Sencha
 Sencha Touch is an HTML5 mobile

app framework for building web apps
that look and feel like native apps.
Apps built with Sencha Touch can be
used with Apache Cordova or Sencha’s
native packager – either will package
the app in a native container and
enable access to device-level APIs
unavailable to traditional web apps.

Sencha
 Pros

 Includes a large set of interoperable products, from “Sencha
Architect” (a visual HTML5 app builder) and “Sencha Touch Charts”
(for data visualization) to IDE integration with Sencha Eclipse.

 Sencha Touch offers a library of UI components, an extensible API
and UI themes among other features.

 Native packaging is possible via Apache Cordova/PhoneGap or
Sencha’s SDK.

 Cons
 Mobile apps written with Sencha Touch can exhibit performance

issues if developers aren’t disciplined in writing efficient JavaScript
and DOM structure(s).

 Sencha’s emphasis on its own stack is perceived as vendor lock-in.
Many developers already have established experience with
preferred frameworks for HTML5/JavaScript/CSS based apps.

Conclusion
 Cross-platform development is the

way to go if it fits both the application
requirements and the skill set of the
resources.
Carefully select the development tool/ SDK to make certain it
supports all the required functionality of the application. Many
of the frameworks support extensions that will allow the
addition of native modules to fill gaps. Ultimately a cross-
platform framework should reduce the development time-line
and budget compared to a “multiple code base approach”
developed with native frameworks.

Created by: ASHVINS Group, Inc.
Email : sales@ashvinsgroup.com
www.ashvinsgroup.com

